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SUMMARY

A method is proposed which can facilitate parallel computations of particle transport in complex
environments, such as urban landscapes. A two stage-approach is used, where in the first stage, phys-
ical simulations of various aerosol release scenarios are conducted on a high-performance distributed
computing facility, such as a Beowulf cluster or a computing grid, and stored in a database as a set of
transfer probabilities. In this stage, the method provides a partially decoupled parallel implementation of
a tightly coupled physical system. In the second stage, various aerosol release scenarios can be analysed
in a timely manner, using obtained probability distributions and a simpler stochastic simulator, which
can be executed on a commodity computer, such as a workstation or a laptop. The method presents a
possibility of solving the inverse problem of determining the release source from the available deposition
data. Using the proposed approach and developed graphical tools, a case of aerosol dispersion in a typical
urban landscape has been studied. A considerable speedup of analysis time for different aerosol dispersion
scenarios has been demonstrated. The method is appropriate for the development of express risk analysis
systems. Copyright q 2006 John Wiley & Sons, Ltd.
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1. BACKGROUND

The problem of urban aerosols closely relates to environmental issues, and has also received
special attention in the United States following the terrorist attacks on 11 September 2001. The
U.S. Department of Homeland Security has sponsored planning scenarios in order to help prepare
municipalities for the possibility of an event related to the release of biological, chemical, or
radioactive material in urban areas. One approach is to conduct computer simulations of these
scenarios using computational fluid dynamics (CFD) [1]. While these simulations can provide
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accurate results, the time required to run a simulation of a specific incident might very well take
from several hours to several days to complete, depending upon the size of the simulation grid
and the computing resources at hand. Considering the time-critical nature of the need to respond
to these incidents, it is all too likely that the information necessary for first responders to carry
out their jobs would not be available until after the fact.

The problem becomes even harder when several physical models are involved in simulations.
One common example is a combined CFD/LPD (Lagrangian particle dynamics) approach [2],
which is commonly used in aerosol tracking applications. Running a time-critical simulation based
on a variety of physical models can be very time consuming. One approach is to run a series
of simulations using a cluster or grid-computing network to generate a set of data from which
accurate predictions of the dispersion of a contaminant could be made in a timely manner. In other
words, utilizing a computing grid, it is possible to run simulations of multiple dispersion situations
on parallel systems in order to quickly develop data sets for a wide range of scenarios. With these
data sets, a fast response of the system can be achieved by replacing complex 3D simulations with
information retrieval from a database. This idea has been proposed in the past by Thilmen [1]
and implemented by Smirnov and Rowan [3, 4] in a prototype risk analysis system. However, for
realistic scenarios it proved to be difficult to realize because of the enormous number of scenarios
which need to be considered in order to cover a representative range of all possibilities. Not to
mention, that 3D data sets produced in CFD simulations are usually very large. The method of this
study provides an improvement on this idea, which consists of replacing the database of scenarios
with the database of domain transfer probabilities (DTPs), and augmenting the database query
procedure with a simplified stochastic simulator suggested by Smirnov et al. [5, 6].

Another problem addressed in this study is the efficient parallel implementation of a physically
based particle transport simulator. Distributed computer platforms, such as workstation clusters or
grid computing environments, offer two main advantages for large-scale simulations: (1) they enable
processing of very large data sets, which typically cannot fit onto a memory of a single workstation
and (2) they speed up the simulation process. However, the major obstacle in the deployment of
CFD solvers on distributed computing systems is the tightly coupled nature of CFD discretization
schemes, based on continuum approximations. This is especially evident for multi-phase fluid-
particle systems, including particle-laden flows, aerosol transport, etc. which present even more
formidable parallelization problems than pure fluid dynamical systems. In particular, when discrete
solvers are used in a simulation, such as LPD solvers, one may encounter serious load balancing
issues, related to non-uniform particle distributions inside the domain. Also, particle transport
across the sub-domain boundaries may contribute significantly to the communication overhead.

Computational clusters can be improved to some extent to suit the need of high-performance
computing by using high-bandwidth communication switches and fast local area networks (LANs).
However, this approach reaches its limits as the number of nodes increases. Firstly, because the
application of conventional domain decomposition technique will increase the communication
overhead for highly decomposed domains due to the increasing boundary-to-volume ratios for
smaller domains. Also, a tight coupling of the computing nodes negatively affects the performance
since the cumulative failure rate from all nodes becomes a problem on a large distributed system.
In addition to these, in a grid computing environment one can no longer guarantee the required
high bandwidth, since the underlying communication network is inherently slow.

In this study, we combine the idea of DTPs with a probabilistic implicit tracking (PIT) algorithm
to develop a technique, which provides a partially decoupled domain decomposition strategy. Using
this strategy, one can formulate and solve a tightly coupled physical model as a loosely coupled
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system, thus enabling an efficient multi-processor implementation. The approach is effective when
a large number of aerosol release scenarios need to be analysed in a timely manner. This method can
form a basis for an express risk analysis system of aerosol dispersion and tracking. A prototype of
such a system was developed and demonstrated in the course of this study. To test the effectiveness
of the approach, a hypothetical case of aerosol dispersion in an urban environment has been
considered.

Finally, the accessibility of data and their storage, retrieval, and visualization issues are addressed
by developing a prototype risk assessment system based on a web application for submitting
database queries and analysing the results. This application will allow the user to select a location
from which a contaminant has been released and obtain results in far shorter time than it would
take to run the physical model. The accuracy of the results can be brought close to that of the phys-
ically based LPD model provided sufficient computational resources were used to collect particle
statistics in prior cluster simulations. In this way, not only can the issue of predicting dispersion
scenario be addressed accurately and quickly, it would also allow emergency first responders to
immediately access this information stored on a common media (CD, DVD) or via a laptop com-
puter and a wireless Internet connection from close proximity to the actual contaminant release
location.

2. METHOD

2.1. Domain transfer probabilities

The main idea of the method is to replace one complex tightly coupled multi-physics simulator
of particle transport with a sequence of two simpler simulators: (1) a partially decoupled multi-
physics simulator run for each sub-domain separately and independently of other sub-domains and
(2) stochastic (Monte Carlo type) simulator applied to all sub-domains using the input from the
previous decoupled simulations.

As mentioned in the previous section, the improvement offered by the current method consists of
replacing the database of scenarios with what we call DTPs, and substituting a stochastic simulator
for the database query procedure. This method essentially reduces the size of the data that needs to
be stored, or transferred over the network, since a typical DTP set can incorporate many scenarios.
Figure 1 illustrates this concept. In essence, DTPs determine the probability for a particle released
at a certain location inside a domain or at its boundary to exit the domain at any other location
on the boundary, or being deposited on the objects inside the domain. In Figure 1, this is shown
schematically by boundary-to-boundary arrows inside the domain boxes in DTP-DATA area. The
essential feature of the method is that the DTP data on different domains can be obtained and
stored completely independently of each other. This makes the process of obtaining DTPs an
embarrassingly parallel procedure. These DTPs replace the actual physical model and enable one
to compute the aerosol concentrations and depositions using a simpler stochastic simulator rather
than more complex CFD/LPD schemes. The upper box in the figure illustrates this schematically
on example of three domains connected by arrows, which represent the inter-domain particle
transfer simulated stochastically using DTP data.

It should be noted that this procedure works as a replacement for LPD scheme only. It still
requires the computation of CFD field using conventional domain decomposition scheme. Never-
theless, considering a large number of aerosol release scenarios that can be associated with one
flow field realization, this replacement is warranted. Using DTPs with a stochastic simulator and
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Figure 1. Express simulation scheme using DTP data.

Figure 2. Aerosol dispersion in a city: A–O-domain objects.

CFD-generated database of different flow realizations, one can analyse various aerosol deposition
scenarios with a commodity workstation or even a laptop, and in a shorter time than would be
required for a full physically based simulation.

An important step in constructing the DTPs is to represent the whole simulation space as a
collection of well-identified objects. In the case of an urban environment, this representation comes
naturally, since the objects can be associated with buildings, bridges, etc. Figure 2 shows a generic
city map where different objects of importance are marked by letters (A,B,C . . .). It should be
noted that parts of the ground, like lawns, street pavements, etc. can also be considered as separate
objects, thus enabling the aerosol fallout in various locations on the ground to be estimated.
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An aerosol release scenario may include many parameters, such as the release location, aerosol
size distribution, volatility, etc. and indeed, the whole air flow field present at the time of the
release is a part of the scenario parameter space.

To describe a set of solutions for various aerosol release scenarios, we define DTP as the
probability for a particle to be transferred from any point of the domain to any object inside the
domain, or to a boundary point of the neighbouring domain. The probabilistic nature of the DTP
sets enables one to obtain them separately for each domain and independently of other domains.
Thus, the solution procedure to construct the DTP sets can be implemented in a completely
decoupled manner, and leads to the so-called embarrassingly parallel simulation.

We should note that this procedural decoupling applies only to the discrete phase, involving
particle dynamics routines. The continuum flow field will still have to be solved using conven-
tional domain decomposition schemes. Still, this represents a considerable improvement in overall
efficiency of parallel computations, since particle tracking across domain boundaries is notoriously
expensive in terms of communication overhead.

Once the DTP sets are constructed for each sub-domain, particle depositions on objects arising
from an initial source (S) can be reproduced by stochastically generating particles and letting them
transit from domain to domain and from domain boundaries to objects, following the assigned
probabilities. Figure 3 shows the conventional way of particle tracking through a decomposed multi-
domain space. In contrast, the current approach is conducted in two stages. First, the information
on DTPs is collected for each domain in prior physically based simulations (Figure 4), and then
a probabilistic procedure of particle tracking is applied, which we call PIT. This procedure is
essentially a stochastic simulator, which uses the DTP data set generated in prior physically based
simulations (Figure 5).

In particular, the DTP data produced in the first stage of physical modelling is assembled in two
sets: the transfer probabilities, which represent boundary-to-boundary transfer events and internal
deposition probabilities for the events of particle fallout on the objects inside each domain. It
should be noted that the size of DTP sets can still be too large, since the number of all point-
to-point correspondences is itself a product of large numbers. However, this size can be reduced
significantly, if one considers only boundary-to-boundary transfer sets, and limits the number of
boundary elements, which hold the probability data. This can be done by exploiting the uneven

Figure 3. Particle passage through a decomposed domain: S—particle source; A–C—physical objects where
the particle fallout occurs; a–e—particle trajectories; 1–6—domains of a decomposed computational space.
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Figure 4. Assembling domain transfer probabilities: S—boundary particle source;
A–C—objects; 1—domain boundaries; 2—particle trajectories; 3—source-to-boundary

transfer probability; 4—source-to-object transfer probabilities.

Figure 5. Implicit particle tracking using DTPs: S—initial particle source; 1—bound-
ary particle sources; 2—boundary-to-boundary transfer probabilities; 3—object sinks;

4—boundary-to-object transfer probabilities.

nature of aerosol distributions at the boundaries. In this case, only the probabilities with non-zero
values, or those above a certain threshold can be stored, which can reduce the total data storage
and processing times considerably. More discussion of this technique is provided in Section 2.3.

Another reason why the DTP data sets can be made very compact lies in the coarse-grained
representation of DTPs on the basis of discrete objects rather than continuum points. This is
because the size of point-to-object relationships is much smaller than point-to-point relationships,
since the number of objects in the domain is usually much smaller than the number of all possible
locations.

2.2. Physical modelling

The algorithms for fluid dynamics and particle tracking used in the first phase are based on
conventional continuum discretization schemes and particle dynamics routines. The results of
these simulations, however, have to be represented in a probabilistic manner, as discussed earlier,
so that a simpler stochastic modelling can be used in the subsequent data analysis phase.
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In this study, we used an open source CFD solver OpenFOAM (openfoam.org) to compute the
fluid phase and a simplified aerosol transport model based on the equation of particle motion,
expressed in terms of particle velocity, v(x, t), in a given mean flow field, u(x, t):

dv
dt

=CD(u − v) + CTu′ − g (1)

where CD is the drag coefficient, CT the turbulent diffusivity, u′ is the instantaneous turbulent
fluctuation vector, and g is the gravity acceleration vector [7]. The position of the particle at each
time step is computed using a midpoint interpolation scheme: x= x0 + dt (v + v0)/2.

The effects of turbulent dispersion on the particles, which are encapsulated in the second term of
(1), can be accounted for by an appropriate sub-grid scale turbulence model. In particular, the RFG
technique developed earlier by Smirnov et al. [8] was used to simulate the effects of turbulence
on the aerosols.

In the stage of physically based modelling, a CFD/LPD solver is used to simulate each aerosol
particle as it is convected in a velocity field. The particle is traced inside the computational domain
until it crosses the domain boundary or hits an object inside the domain. In the first event, the
corresponding boundary hit count is incremented, and in the second event the hit count for that
object is updated. The final DTP is obtained by dividing all the hit counts by the number of particles
released. The statistical error of transfer and deposition probabilities computed in this manner will
be proportional to 1/

√
Np, where Np is the number of particles. This provides a flexibility of

adjusting the accuracy of the simulations by selecting the particle sample of a suitable size.

2.3. Probabilistic implicit tracking

There are two approaches to find the probability of particle deposition at a certain location in some
domain, given its release from a different location of possibly another domain. In the first approach,
one can use the appropriate relations from the probability theory; in the second approach, one can
use stochastic simulation.

Let us consider the probability P(A|Bi ) of particle deposition on object A when it was released
from location i at boundary B.‡ Then, the total probability of particle deposition at A is given by
[9]:

P(A) =
NB∑

i
P(Bi )P(A|Bi )

where NB is the total number of elements on the boundary B, and P(Bi ) is the probability of
particle’s occurrence at the boundary. The latter can be computed using the cross-boundary transfer
probabilities from the neighbouring domain:

P(Bi ) =
Nn
B∑

i
P(Bn

j )P(Bi |Bn
j )

where Nn
B is the total number of elements on the boundary of the neighbour domain, P(Bn

j )

is the probability of particle’s occurrence at the neighbour domain boundary, and P(Bi |Bn
j ) is

‡More exactly, Bi represents boundary element i , such as obtained by surface triangulation.
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the DTP between element Bn
j at the neighbour domain boundary, and element Bi at the current

domain boundary.§ To find P(Bn
j ), one has to apply this formula again but this time using DTPs

of the neighbour to the neighbour domain, etc. until all the domains have been exhausted. The
whole procedure can be formulated as a recursive algorithm spanning all the boundary elements
on all the domains. The initial non-zero boundary particle probabilities will come from the domain
containing the particle source. Although possible in principle, this procedure will involve repeated
summations over all the boundary elements, and with a growing number of domains it can become
prohibitively expensive.

In contrast, the PIT procedure uses a stochastic simulator, which generates a certain number
of particles at the source and moves them randomly from boundary to boundary following the
assigned DTPs. This process stops when all particles have crossed the outer boundaries, which
have no neighbours across or are deposited on inside objects. The procedure can be organized by
looping through particles or by looping through all boundary elements. The former will run faster,
since empty elements will be automatically avoided, but it will require additional bookkeeping for
each particle to identify its current host element at the boundary.

The core of the procedure is the transfer operator, which for each particle provides a simple
assignment of a new object Y given an old object X and the object-to-object transfer probability
function, P:

X
P−→ Y

where the input object, X , should be a boundary element, the output object Y can be either a
boundary element or a domain object, and the transfer probability function P is given by the
corresponding DTP data.

Figure 6 shows probability distributions of aerosol fallout on different objects as a function
of wind direction and one of the three spatial positions (in this case the height). These two
distributions are very typical in a sense that all other distribution functions obtained have the same
spiky appearance and typically vary between a peaked and narrow shape like Figure 6(a) and a
wider distribution like Figure 6(b). The dependence in two other spatial directions shows similar
features. The shape of the distributions depends on wind velocity and turbulence levels and is
usually very spiky (Figure 6(a)). This shape is attributed to the fact that in most cases the particles
are carried away from the objects causing zero deposition counts. It can be seen from Figure 6
that the size of the data set can be reduced by not storing the zero counts or very low probability
counts. On the average, by avoiding zero counts, a reduction by about a factor of 4 is possible.

To achieve further reduction in both required memory and execution time, one can simply
ignore the DTP values lower than a certain specified threshold and use only statistically significant
contributions from the DTP set. With the appropriate selection of the threshold, such reduction will
not affect the outcome of the simulations, unless one is interested in very low deposition areas,
which is usually not the case. For example, if one is interested in the most contaminated areas and
can ignore the fallout of less than 1% of the total, then this cutoff technique will make sense. Since
there is usually a considerable number of low count events in DTP distributions, introducing such
a cutoff will lead to another drastic reduction of the data size and computing time. The results of
using the DTP-cutoff technique are presented in Section 3.

§Neighbour domain boundary common with the current boundary should not be considered.
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Figure 6. Typical DTP distributions for different space locations and wind
directions: (a) narrow; and (b) wide.

Another data size reduction can be achieved by using data compression. Standard data com-
pression methods, such as LZW, LZ77 [10], and others can reduce the size of the file by a factor
of 3 or more depending on the complexity of the landscape. For the data sets stored in a binary
format, the size reduction may be somewhat smaller than for the ASCII format, depending on the
degree of data degeneracy, i.e. the number of zero counts.

It should be stressed that the method in its current implementation applies only to the discrete
phase, by effectively reducing the size of data. It essentially exploits the probabilistic character
of particle motion. The continuum flow field, being deterministic in character, cannot be easily
subjected to such probabilistic treatment and should be handled in a standard way, for example,
using the conventional domain decomposition technique.
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Figure 7. Backtracking particles to the source: A,B,C—fallout measurement locations; shaded area
S—possible particle source location.

Figure 8. Backtracking particles in LDP introduces systematic errors: A—particle source; B—particle
backtracking start point; C—particle backtracking end point; D—duct wall.

2.4. The inverse problem

One of the further advantages of the PIT method is the possibility to solve the inverse problem
almost as easily as the direct problem. This comes from the fact that using the DTP data, and
applying the Bayes’ Rule [9], one can run the particles in reverse, that is, from their fallout locations
all the way to the release location. This idea is illustrated in Figure 7. Suppose there are available
measurements of fallout at some locations, like A, B, and C as shown in the figure. Then one can
release fictitious particles from these measurement locations and run them backwards using the
inverted DTP data. The area where most of the reverse paths intersect will identify the possible
location of particle release.

It should be noted that backtracking particles is also possible with conventional deterministic
methods, such as those based on CFD/LPD schemes. However, using a probabilistic method, such
as presented here, has certain advantages. In particular, reversing the velocity of a particle in an
LPD scheme can in fact introduce a systematic error in predicting its original location, which will
be consistently shifted away from the true origin (Figure 8). This effect is due to the accumulation
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of discretization errors in numerical schemes for partial differential equations (PDEs) and is not
present in a stochastic PIT scheme. In a stochastic algorithm, the particles are not traced through
the domain following a complex iterative scheme, but instead are transferred from boundary
to boundary in a single step using a known probability distribution. Thus, the accumulation of
errors, as happens during the reverse trajectory tracking in LPD schemes, does not take place
in PIT scheme. Moreover, any systematic errors of this type that might have occurred during
the compilation of the DTP sets, using LPD simulations, are completely reversed in probabilistic
backtracking. Thus in principle, the particle release source can be traced more accurately with the
reversed PIT scheme.

3. RESULTS

In this work, the issues discussed above have been addressed and implemented in a prototype risk
assessment system for aerosol transport (RASAT) in urban environments. There are several aspects
required to implement the method:

1. Physical model enabling accurate simulations of events of interest.
2. The possibility to conduct parallel and possibly exhaustive sets of simulations.
3. Data reduction and efficient storage.
4. Data retrieval and visualization.

The prototype system consists of a simulator and front-end interface. The simulator incorporates
a physically based model of aerosol transport and is executed on high-performance computing
facilities, such as computer clusters or grid computing environments. It collects the data of possible
aerosol release scenarios. The front-end interface runs as a web-based application and retrieves
the data for particular scenarios and their outcomes.

In our feasibility study, a generic city landscape was set up and prototyped after the Pittsburgh
downtown area (Figure 9), using the voxel-based 3D graphics system developed by Smirnov
et al. [11, 12]. The whole domain of about 1 km2 area was discretized on the 92× 92× 32 grid
and populated with characteristic features like rivers, hills, bridges, park area, pavements, and
buildings.

Three sets of simulations were performed: (1) parallel runs on a cluster using Lagrangian particle
solver (LPD) to collect the DTP data; (2) PIT using the DTP data; and (3) particle tracking using
a conventional scheme. The purpose of the last two simulations was to conduct a validation study
and compare the results and performances between the PIT scheme and a conventional method. All
three simulators were implemented in a C + + language and run on different hardware platforms
(see Section 3.2).

3.1. Parallel simulations

In the simulations of aerosol transport and dispersion, the whole scene was sub-divided into 16
domains and the runs were conducted on a computer cluster with 4 GB, 2 GHz computing nodes
(teragrid.org). One sub-domain was assigned per each node. Figure 10 shows the typical velocity
and turbulent kinetic energy distribution in a horizontal cross-section taken in the middle of the
domain.

The processor time required followed a near-linear dependence on the number of particles
(Table I), and for the 105 particles run the average time for executing the DTP calculations on a
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Figure 9. Web interface to simulate aerosol release in a city (http://mulphys.com/rasat/demo).

single node was close to 5.5 h. The variance of the execution time was due to the differences in
the number and shapes of objects inside each domain.

3.2. Validation

To validate the method, separate simulations were performed in a conventional (non-parallel)
manner, where the physical CFD/LPD solver was applied to the whole computational space
without using domain decomposition. The validation simulations consisted of two separate runs:
a CFD solver (OpenFOAM) computes several scenarios of flow fields, which were fed into the
LPD solver that computed different particle release scenarios for each given flow field. The results
were compared with those obtained from the stochastic simulator, using the PIT scheme.

Figure 11 shows typical histograms of particle distributions for LPD and PIT methods obtained
for two objects, one experiencing a relatively low and another large particle fallout and 25 different
aerosol release scenarios. The comparison is shown for two DTP sets used: one computed for 103

and another for 105 particles. The data collected for different scenarios show a very good agreement
between the two methods with the average deviation of the results typically within 3% for 105

particles. However, this value may vary depending on the number of particles deposited on each
particular object.

A closer inspection of Figure 11 reveals a slight bias in PIT method towards underpredicting
particle counts for object 2 with 103 particles. It would be difficult to hypothesize at this point
if this bias could be caused by any systematic error introduced by PIT method. The answer
would require the consideration of higher statistical moments and a thorough scrutiny of possible
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Figure 10. Velocity and turbulent kinetic energy fields: (a) mean velocity (m/s);
and (b) turbulent energy (10−2 m2/s2).

Table I. Wall clock time of parallel runs for different number
of particles: CPU= execution time; VAR= variance between

different processors.

Np CPU (s) VAR (s)

102 19 6
103 189 70
104 1894 711
105 19 980 7930
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Figure 11. Comparison of aerosol deposition data computed with LPD and PIT methods for two different
objects and different number of particles. X-axis corresponds to different aerosol release scenarios; Y-axis
shows the number of particles that hit the object divided by the total number of particles released: (a)

object 1, Np = 103; (b) object 1, Np = 105; (c) object 2, Np = 103; and (d) object 2, Np = 105.
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Table II. Execution time of PIT algorithm dependent on the number of
particles in the DTP set.

Np 102 103 104 105

CPU 3 15 21 27

boundary effects. This analysis goes beyond the scope of this study and will be considered in the
future work.

The validation (CFD/LPD) simulation was conducted on the 3GHz, 2GB workstation, and the
typical computing time for one flow scenario with a standard turbulence model (k–epsilon) took on
the average one day. The stochastic simulations using PIT scheme were conducted on a 1.8 GHz,
1 GB Pentium 4 laptop. The execution times for stochastic simulations are given in Table II. As
can be seen from this result, the execution time of stochastic algorithm is largely insensitive to
the number of particles used to generate the DTP sets, especially for larger numbers of particles.
This is because the execution time of the stochastic algorithm depends primarily on the size of
the DTP sets, and the latter is only weakly affected by the number of particles used in physically
based aerosol simulations. This weak non-linear dependence is attributed to small changes in DTP
set size due to more frequent occurrences of near-zero counts (see discussion of DTP-cutoff). In
contrast, the execution time of the LPD scheme is linearly proportional to the number of particles,
as it should. Thus, the speedup of the simulations with the PIT scheme can be quite consider-
able, especially when high-accuracy computations with large numbers of particles are involved.
This speedup will become even more pronounced as more sophisticated physical models are used
to produce the DTP sets.

It should be noted that the overall accuracy of simulations depends on the number of particles
used in both parallel and stochastic simulations. The number of particles used in stochastic simu-
lations can be selected so as to achieve a small response time with a reasonably good accuracy. In
our tests, we used 104 particles for the stochastic algorithm, since that guaranteed less than one
minute response time even for the largest DTP sets.

As discussed earlier, the size of the DTP sets and consequently the execution time of the PIT
scheme can be considerably reduced by ignoring the low probability data. It was noted that because
of a non-uniform nature of the DTP distributions, most of the size of the DTP sets is taken by very
small probability counts. These low counts can be safely ignored for most practical purposes with
a substantial reduction in execution time as well as in data size. To analyse the effects of DTP
cutoff on DTP sizes and execution times, three cutoff thresholds were applied to the probability
sets: 1, 2, and 5%, respectively. The results are presented in Table III. As can be seen, already a
1% cutoff can lead to a considerable reduction in CPU time. However, further increase in cutoff
did not introduce a considerable time reduction. Even greater savings were achieved in total data
size, also shown in Table III.

3.3. Data retrieval and visualization

From the perspective of express risk analysis, it would be highly desirable to have a direct access
to the simulation data on a local workstation, laptop, or via the Internet. In addition to this, the
application should be platform independent and should run equally well on different operating
systems. A simple solution would be an efficient web interface to aerosol dispersion data base.
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Table III. Execution time of PIT algorithm dependent on the probability
cutoff in the reduced DTP sets of 105 particles computed for 25 runs.

CUTOFF 0 1% 2 5%
CPU 27 ± 1.2 4.5 ± 0.13 3.1 ± 0.06 2.3 ± 0.06
SIZE (MB) 559 59 35 19
SIZE (%) 100 11 6 3

This interface should provide a reasonably short access time to the data no matter how large the
total data set can be, and at the same time it should be simple and intuitive to use.

Such a prototype web interface was developed in the course of this study, which enabled us to
test different scenarios of aerosol release and dispersion. The application is written in Java language
and provides a 3D representation of a city with the possibility of navigating through the landscape,
arbitrary positioning of the aerosol source, and setting wind direction (Figure 9). The applet also
performs a real-time simulation of aerosol propagation and dispersion for a limited number of
particles as well as a web retrieval of the particle deposition data from a remote database.

When tested on a 1 GB 1HG laptop with 100MB Internet connection, the speed of retrieval of
each data set was on the average 10–20 times faster than the Java execution of the simulation for
104 particles. Considering that the retrieved data set consisted of 1000 realizations, it leads to a
much greater speedup if multiple local scenarios need to be analysed.

4. CONCLUSIONS AND FUTURE WORK

The method of this study is based on information retrieval from compressed data sets obtained in
prior exhaustive simulations of different aerosol release scenarios.

Using the idea of domain transfer probabilities (DTPs) and implicit probabilistic tracking (PIT),
it was possible to replace a complex physical simulator with a simpler and more flexible stochastic
simulator for the purpose of express analysis of simulation data. The physical simulator still needs
to produce the DTP data sets, but it can be implemented in a completely decoupled (embarrassingly
parallel) manner, since no inter-processor communication is required in LPD schemes to produce
the DTP data sets. The algorithm can then be efficiently executed in multi-processor and distributed
computing environments.

As such, the method serves a dual purpose of (1) providing an embarrassingly parallel
implementation for certain classes of transport problems on grid computing environments and (2)
facilitating express risk analysis of multiple scenarios of a complex physical event. A particularly
relevant problem is the express analysis of possible aerosol contamination in urban environments.
The results show that this method provides a viable and efficient tool for fast analysis of different
contamination scenarios.

A significant saving of retrieval time and data space was achieved by querying objects rather
than particular space locations for fallout data. If a more differentiated approach is needed, this
approximation can easily be refined by splitting large objects into smaller ones, like buildings can
be represented as a set of floors, etc.

A unique advantage of the method is the possibility to accurately solve the inverse problem,
that is, identification of particle release source based on available fallout data as discussed in
Section 2.4. A validation of this feature will be addressed in the future work.
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NOMENCLATURE

CFD computational fluid dynamics
LPD Lagrangian particle dynamics
MPI message passing interface
NS Navier–Stokes
PIT probabilistic implicit tracking
Np number of particles
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